Exercice 1 :

Soit
$$F_1 = \left\{ (x, y, z, t) \in \mathbb{R}^4, \begin{cases} 3x - y + z + t = 0 \\ x - 2y + 3z - t = 0 \end{cases} \right\}$$
 et F_2 le sous-espace vectoriel de \mathbb{R}^4 défini par :
$$F_2 = Vect((1, 1, -2, 1), (-1, 3, 2, 1))$$

- 1. Montrer que F_1 est un sous-espace vectoriel de \mathbb{R}^4 et trouver une base \mathcal{B} ainsi que la dimension de F_1 .
- 2. Déterminer des équations cartésiennes de F_2 .
- 3. Déterminer $F_1 \cap F_2$.
- 4. Déterminer une base de \mathbb{R}^4 formée de deux vecteurs de F_1 et de deux vecteurs de F_2 .

Exercice 2:

 $\overline{\text{Soit}}(\overrightarrow{e_1},\overrightarrow{e_2},\overrightarrow{e_3})$ la base canonique de \mathbb{R}^3 .

Soit \mathcal{F} la famille de vecteurs $(\overrightarrow{e_1} - \overrightarrow{e_2} + \overrightarrow{e_3}, -\overrightarrow{e_1} + \overrightarrow{e_2} + \overrightarrow{e_3}, \overrightarrow{e_1} + 2\overrightarrow{e_2} + \overrightarrow{e_3})$ de l'espace vectoriel \mathbb{R}^3 .

- 1. La famille \mathcal{F} est-elle libre ou liée? Est-ce une base de \mathbb{R}^3 ?
- 2. Soit \mathcal{G} la famille de vecteurs de l'espace vectoriel \mathbb{R}^3 définie par $\mathcal{G} = ((2, -2, 2), (-1, 1, -7), (6, 9, 2))$.
 - (a) \mathcal{G} est-elle une famille libre ou liée? Est-ce une base de \mathbb{R}^3 ?
 - (b) Déterminer la matrice de \mathcal{G} dans la base \mathcal{F} puis retrouver les résultats de la question précédente.

Exercice 3:

On considère les vecteurs $\overrightarrow{a} = (1, 2, 0)$, $\overrightarrow{b} = (2, 1, 3)$, $\overrightarrow{c} = (4, 5, 3)$, et le sous-espace vectoriel $F = Vect(\overrightarrow{a}, \overrightarrow{b}, \overrightarrow{c})$ de \mathbb{R}^3 . On munit \mathbb{R}^3 du produit scalaire usuel.

- 1. Déterminer la dimension et une base de F.
- 2. Trouver une ou des équations cartésiennes caractérisant F.
- 3. Soit \overrightarrow{u} et \overrightarrow{v} deux vecteurs orthogonaux et non nuls de F.
 - (a) Montrer que $(\overrightarrow{u}, \overrightarrow{v})$ est une base de F.
 - (b) On suppose de plus ici $\|\overrightarrow{u}\| = \|\overrightarrow{v}\| = 1$ et on se donne un vecteur \overrightarrow{w} de F. Il existe donc deux réels λ et μ tels que $\overrightarrow{w} = \lambda$. $\overrightarrow{u} + \mu$. \overrightarrow{v} $(\lambda, \mu$ sont les coordonnées de \overrightarrow{w} dans la base $(\overrightarrow{u}, \overrightarrow{v})$.

Calculer les produits scalaires $\overrightarrow{w}.\overrightarrow{u}$ et $\overrightarrow{w}.\overrightarrow{v}$.

- 4. On note \overrightarrow{x} et \overrightarrow{y} les deux vecteurs de la base de F trouvée à la question 1).
 - (a) Soit $\lambda \in \mathbb{R}$ et $\overrightarrow{z} = \lambda \overrightarrow{x} + \overrightarrow{y}$. Montrer que

$$\overrightarrow{z} \perp \overrightarrow{x} \Leftrightarrow \lambda = -\frac{\overrightarrow{x} \cdot \overrightarrow{y}}{\|\overrightarrow{x}\|^2}.$$

- (b) En déduire une base orthogonale de F puis une base orthonormale \mathcal{B} de F.
- (c) Vérifier que $(1,1,1) \in F$ et déterminer les coordonnées de ce vecteur dans la base \mathcal{B} .