Chapitre 11 : Polynômes à coefficients réels ou complexes

I - Notion de polynôme

- 1) Monômes
- 2) Polynômes
- 3) Opérations sur les polynômes
- a) Addition
- b) Multiplication externe
- c) Multiplication de deux polynômes
- d) Composition
- e) Propriétés des opérations +, . et \times
- f) Propriétés de l'opération o

II - Racines d'un polynôme

- 1) Généralités sur les racines
- 2) Polynômes dérivés et ordre de multiplicité d'une racine
- a) Définition
- b) Dérivées d'ordre supérieur
- c) Ordre de multiplicité d'une racine
- 3) Théorème de factorisation

Théorème de d'Alembert-Gauss

Théorème (factorisation dans $\mathbb{C}[X]$)

Exemples.

Compétences à acquérir

- Savoir déterminer l'ordre de multiplicité d'une racine d'un polynôme.
- **2** Savoir factoriser un polynôme dans $\mathbb{C}[X]$.
- 3 Savoir déterminer si un polynôme divise ou non un autre polynôme (cas simples).
- 4 Savoir étudier une suite de polynômes.
- 6 Savoir résoudre, dans des cas simples, des équations dont l'inconnue est un polynôme.

Questions de cours possibles :

- Énoncer complètement et précisément le théorème de factorisation dans $\mathbb{C}[X]$.
- Soit $P, Q \in \mathbb{K}[X]$ ($\mathbb{K} = \mathbb{R}$ ou $\mathbb{K} = \mathbb{C}$).

À quelle condition nécessaire et suffisante le polynôme P divise-t-il Q?

- Énoncer précisément les règles sur les degrés (degré d'une somme, d'un produit, d'une composée de polynômes).
- Donner l'expression des coefficients de $P \times Q$ en fonction des coefficients de P et de Q (avec démonstration).
- Énoncer la caractérisation de l'ordre de multiplicité d'une racine d'un polynôme P faisant intervenir les dérivées successives de P.